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Stochastic dynamics in a two-dimensional oscillator near a saddle-node bifurcation
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We study the oscillator equations describing a particular class of nonlinear amplifier, exemplified in this
work by a two-junction superconducting quantum interference device. This class of dynamic system is de-
scribed by a potential energy function that can admit minima~corresponding to stable solutions of the dynamic
equations!, or ‘‘running states’’ wherein the system is biased so that the potential minima disappear and the
solutions display spontaneous oscillations. Just beyond the onset of the spontaneous oscillations, the system is
known to show significantly enhanced sensitivity to very weak magnetic signals. The global phase space
structure allows us to apply a center manifold technique to approximate analytically the oscillatory behavior
just past the~saddle-node! bifurcation and compute the oscillation period, which obeys standard scaling laws.
In this regime, the dynamics can be represented by an ‘‘integrate-fire’’ model drawn from the computational
neuroscience repertoire; in fact, we obtain an ‘‘interspike interval’’ probability density function and an asso-
ciated power spectral density~computed via Renewal theory! that agree very well with the results obtained via
numerical simulations. Notably, driving the system with one or more time sinusoids produces a noise-lowering
injection locking effect and/or heterodyning.
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I. INTRODUCTION

The response of nonlinear dynamic systems to small
turbations, applied when the system is poised at~or just past!
the onset of a bifurcation, has elicited considerable interes
recent years. The added sensitivity in this regime close
bifurcation can be exploited as a means of signal amplifi
tion @1,2# in a large class of nonlinear dynamic system
Conversely, the increased sensitivity can amplify enviro
mental fluctuations and degrade a system’s signal to n
ratio and its signal transducing performance@3,4#. Nonlinear
dynamic systems can also display a variety of interfere
phenomena due to competing periodic effects. Possibly
most widely known phenomenon is the generation of ‘‘co
bination resonances’’ when two tones of frequenciesv1 and
v2 are ‘‘mixed’’ together in a nonlinear system. In this cas
the output power spectral density~PSD! contains a respons
at the combinationsumv16nv2u wherem,n are positive in-
tegers~there are selection rules depending, for instance,
the symmetry of the potential energy function, that put ad
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tional constraints onm,n). These interference effects wer
studied as early as the turn of the twentieth century by v
Helmholtz @5#.

However, a large class of two-dimensional~2D! nonlinear
systems, exemplified in this work by the two-junction or
superconducting quantum interference device~SQUID!, is
known to displayspontaneous~i.e., in the absence of exter
nal driving signals! oscillations when the dynamical syste
crosses a threshold through a bifurcation@6#. The oscillations
are periodic but nonsinusoidal, approaching sinusoidal
havior as one goes farther past the bifurcation. The osc
tion frequency is a function of the ‘‘distance’’ past the ons
of the bifurcation, and displays a characteristic scaling
havior with respect to the bias parameter that controls
bifurcation@6#. Applying an external sinusoidal signal to th
system in this state of spontaneous oscillation yields a
quency mixing~this has, in fact, been observed by us in t
dc SQUID @7#! that is quite analogous to the combinatio
resonance generation described above.

The above behavior becomes even richer and more c
plex in the presence of background noise. The stocha
resonance~SR! effect, only one of a large class of noise
mediated cooperative phenomena, has already received
of attention because of its potential capability to improve
sensitivity of thenonlinear dynamicsystem to weak deter
ministic signals@8#. Recently, the effect has been studied
dc SQUIDs@9# with the idea of exploiting the backgroun
noise to improve sensitivity, rather than trying to devi
©2001 The American Physical Society14-1
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ever-more-sophisticated shielding and noise-cancella
procedures. SQUIDs@10# are the most sensitive detectors
magnetic fields and, with enhanced noise-tolerance,
likely to find applications in fields as diverse as biomagn
ics, geophysics, communications, and assorted remote s
ing appplications.

In this work, we consider a dc SQUID as a prototype 2
system that traverses a saddle-node bifurcation when a
trol or bias parameter crosses a critical value. In a rec
paper, the spontaneous oscillation frequency of the solut
~in the so-called ‘‘running regime’’ past the critical poin!
was computed@11#, and we reproduce the salient features
that calculation for completeness. We then explore the
fects of locking the intrinsic oscillations to an external dri
ing signal; the phenomenon of background noise-suppres
via frequency locking~first observed in charge density wav
experiments@12# and later quantified via a very simpl
theory involving a circle map representation of the lock
dynamics@13#! is examined in some detail. As part of ou
description of the system behavior in the neighborhood
the critical point, an interesting analogy with simp
~integrate-fire! models of neural firing is exposed. Finall
we study some heterodyning effects~nonlinear production of
sum and difference frequencies! arising out of the introduc-
tion of a time-sinusoidal target signal~in addition to the
locking signal!.

The paper is organized as follows. In Sec. II we wr
down the dc SQUID equations of motion and normal fo
equations, and we study their oscillatory solutions in the
sence of driving. In Sec. III we calculate the shifted oscil
tion frequency and synchronization boundaries for the c
of periodic forcing, in the absence of noise. We analytica
study the normal form augmented with noise in Sec. IV. T
interesting phenomena of noise suppression through in
tion locking and heterodyning are studied in Sec. V us
numerical simulations with deterministic and stochastic fo
ing. We discuss our conclusions in Sec. VI.

II. BACKGROUND

The dc SQUID is a superconducting loop interrupted
two symmetrically placed ‘‘weak links’’~Josephson junc
tions!. Its dynamics are described by equations for the Sch¨-
dinger phase differencesd i across the~assumed identical!
Josephson junctions@14,15#

tḋ i5
I b

2
1~21! i I s2I 0 sind i1Fi~ t !, i 51,2, ~1!

where I s , the circulating current induced in the loop by a
externally applied magnetic flux, can be written in the fo
b(I s /I 0)5d12d222p(Fe /F0). Here, t5\/(2eR) is a
characteristic time constant (R being the normal state resis
tance of the junctions!, b[2pLI 0 /F0 is the nonlinearity
parameter,L is the loop inductance,I 0 is the junction critical
current, andF0[h/(2e) is the flux quantum. The indepen
dent additive noise termsFi(t) account for thermal noise
arising due to the junction resistances. These terms are t
to have zero mean and to be Gaussian and delta correl
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^Fi(t)&50, ^Fi(t)F j (t8)&5s̃2d i j d(t2t8). The two natural
experimental control parameters are the applied dc magn
flux Fe and the dc bias currentI b , which we take to be
symmetrically applied to the loop.

It is convenient to introduce a scaled time, applied fl
Fex[Fe /F0, bias currentJ[I b /(2I 0), and noise strength
s5s̃/At, and to rewrite the differential equations in term
of the sum and difference variables@14,16# S[(d11d2)/2,
d[(d12d2)/2. Dropping the noise terms for now, we obta

ḋ52
2

b
~d2pFex!2cosS sind,

~2!
Ṡ5J2cosd sinS.

For sufficiently small bias current magnitudeuJu, the sys-
tem is attracted to a stable fixed point (d5d0 , S5S0),
whose position is a function of the three system parame
b, Fex, andJ. For fixedFex andb, there is a critical bias
current Jc above which the stable superconducting state
destroyed; forJ.Jc , the phase variables (d1 ,d2) or (d,S)
display periodic oscillation. The thresholdJc can be com-
puted@15#, in good agreement with experiment. Just past
bifurcation point~i.e., for J just exceedingJc), the system
encounters a ‘‘bottleneck’’ once each period near the po
where a stable~node! fixed point annihilated with an un
stable~saddle! fixed point. The term ‘‘saddle-node conne
tion’’ refers to the existence of orbits connecting each no
to a saddle and each saddle to the ‘‘next’’ node. When
bifurcation occurs, a running state is created in a global
furcation, with the chain of~merged! saddle-node-saddle
connections giving rise to an attractor. Near the bifurcati
the ensuing oscillations have the form of relaxation osci
tions @16#.

The resulting oscillation frequency of the circulating cu
rent I s is generally very high, so that usually only the tim
averaged quantityĪ s is measured in experiments~see, how-
ever, Ref.@17#, where the oscillations were actually observ
and the frequency computed in the extreme limiting case
b!1). Thus, the SQUID’s response to an applied fluxFex

can be described via anĪ s vs Fex transfer characteristic
from which the input-output gain~i.e., transfer characteristic
slope! or the output signal-to-noise ratio~SNR! at the fre-
quency of a weak injected signal~and in the presence of
noise floor! may be calculated as a function of the bias p
rameters (J,Fex) @9,15#. The optimal response~highest gain
or output SNR! is obtained just beyond the bifurcation an
the onset of oscillations.

A general analytical solution of the dynamics~2! is not
available; however, we can derive an approximate norm
form solution close to the bifurcation~see Ref.@11# for de-
tails!. We assume the dc bias fluxFex to be fixed at some
nonzero value; for 0,J2Jc!1, we may Taylor expand the
dynamics~2! ~augmented with the equationJ̇50), around
the critical fixed point (d0 ,S0 ,Jc): d5d01x, S5S01y,
with uxu, uyu!1, andJ2Jc5O(2). We eliminated andS
in favor of x andy and then transform to a rotated coordina
systemu,v:
4-2
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S u

v D 5SS x

yD ; S5S cosu sinu

2sinu cosu D , ~3!

whereu5(1/2)arctan(2b sind0 sinS0).
It follows that u̇5lu1O(2), where l522/b

22 cosS0 cosd0, which must be negative so that the syste
orbits are attracted to the subspaceu50 on the faster~order
one! time scalel21. Consequently, the attracting subspace
u5O(2). Theevolution ofv on the center manifold is given
by

v̇5~J2Jc!cosu1av21O~3!, ~4!

where~see Ref.@11# for calculational details! a52sinu(C
2D sin 2u)1cosu(D2Csin 2u), C5 1

2 sind0 cosS0, and D
5 1

2 cosd0 sinS0.
Ignoring terms of cubic order and higher, we may no

integrate Eq.~4! analytically, realizing that the dynamics~for
small J2Jc) is dominated by the passage through t
‘‘bottleneck’’ where v̇ is at its smallest. We obtain the solu
tion

v~ t !5AANF

a
tan

v0t

2
, ~5!

with ANF[(J2Jc)cosu andv0[2AANFa, corresponding to
a spontaneous oscillation period of

T05
p

AANFa
. ~6!

The normal form~NF! ~4! corresponds to a highly over
damped particle moving in a potential

U~v !52ANFv2
a

3
v3. ~7!

Equation~6! conforms to the period scaling law that a
companies bifurcations of this type@6#. Figure 1 compares
Eq. ~6! with numerical simulations of the full nonlinear dy
namics given by Eq.~2!. The simulations were run for a
range of system parametersb andFex ~owing to a paramete
symmetry, the full range ofFex is between 0 and 0.5; we
also note that SQUIDs are often fabricated to haveb'1). In
the figure, the solid line is computed from Eq.~6!, and the
data are plotted over three decades in the reduced param
J2Jc . In a typical SQUID, the currentJ2Jc50.001 might
correspond to;5210 nA, with the oscillation frequency
being in the GHz regime@9,16#. The agreement is good ove
the full range shown; it is excellent for smaller values ofb
and Fex. The agreement grows systematically worse
larger b and Fex, since either one reduces the size of t
‘‘bottleneck’’ regime. Even in the latter cases, the agreem
improves in the limitJ→Jc , i.e., close enough to the bifur
cation point.

We reiterate that the oscillations arenot sinusoidal near
the critical point, but approach sinusoidal behavior deep
the running regime; whenFex50.5, the oscillations becom
06611
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most closely sinusoidal, and the average circulating curr
vanishes. We note, also, that the dc bias fluxFex could easily
have been used as the control parameter~for constant bias
currentJ) with an analogous scaling law for the spontaneo
oscillations~this simply modifies the prefactor of Eq.~6!, so
T0 scales with the same exponent inFex2Fex1, Fex1 being
the critical value ofFex for a given fixed value ofJ). In fact,
in laboratory settings and practical applications, the sig
may be fed in either via the bias current or the applied fl
with engineering considerations~e.g., impedance matchin
constraints that depend strongly on the input frequency! of-
ten determining which method is preferred.

Note that the solution~5! is singular when the argumen
v0t/2 is an odd multiple ofp/2. However, a better-behave
alternate NF@that agrees with Eq.~4! throughO(v2)] may
be written down using the Taylor series expansion of cov
throughO(v2):

v̇5~J2Jc!cosu12a~12cosv !. ~8!

This has the solution

v~ t !52 arctanS b tan
v00t

2 D , ~9!

where b[AANF/(ANF14a) and v00[AANF
2 14ANFa5v0

1O(2). Thesolution ~9! is bounded and well behaved.
Figure 2 shows approximately two cycles of the circul

ing current time series derived from the full SQUID equati
~dotted line! and normal form~8! ~solid line! solutions. The
agreement at this scale is excellent. In Fig. 3 we zoom in
one ‘‘spike’’ to reveal the difference between the solution

FIG. 1. Log-log plot of oscillation frequencyf vs J2Jc deter-
mined from direct numerical simulations~points! and the analytic
prediction Eq.~6! ~line!, letting f 51/T0, for various values ofb,
Fex, andJ. Dimensionless units are used in all figures.
4-3
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Simple averaging arguments can be applied to the nor
form to yield the oscillation frequency when a driving sign
is present. This is done in the following section.

III. PERIODIC FORCING AND INJECTION LOCKING

The use of normal forms is a powerful technique for t
analysis of dynamical systems tuned near the onset of b
cation@18#. Normal forms may be ‘‘augmented’’ with deter
ministic and/or stochastic driving terms in an attempt to
tend the rigorous procedures to include these perturb
effects @19#. Intuitively, one expects this should work fo
sufficiently small perturbations, and indeed this approach
had notable successes, for example, in explaining the n
rise in Josephson parametric amplifiers@20# and the observed
shifts in bifurcation points in a quasiperiodically driven ma
netoresistive ribbon@2#. In at least one specific case the au
mented normal form was derived explicitly, for period do
bling in a bouncing ball system@4#. In general, the techniqu
is used as a practical if nonrigorous modelling tool. In th
spirit, we will consider deterministically augmented norm
forms in this section, with stochastic driving terms to follo
in the next section.

We begin with the modified normal form equation~8!
describing the dynamics on the center manifold. We n
include a periodic forcing in the bias current

J5Jc1Ac1q sin~vt1Q!, ~10!

FIG. 2. Approximately two cycles of the full SQUID equatio
~dotted line! and normal form~solid line! circulating current time
series solutions.b51.33, Fex50.2, andJ2Jc50.0001.

FIG. 3. Close-up view of one ‘‘spike’’ in the full SQUID equa
tion ~dotted line! and normal form~solid line! circulating current
time series solutions. Same parameters values as Fig. 2.
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whereAc.0 andQ are constants. With this bias current, th
center manifold dynamics~8! becomes

v̇5a2b cosv1« sin~vt1Q!, ~11!

where a[Ac cosu1b, b[2a, and where, for notationa
convenience, the quantity«5q cosu has been introduced
However, keep in mind thatq is the amplitude of the ac
component of the bias current.

A. Calculation of the shifted frequency

Our first step is to replacev(t) in Eq. ~11! by a ‘‘natural
angle’’ c, i.e., an angle that, in the«50 limit, evolves at the
constant ratev00 @21#. By Eq. ~9!, we see that setting

c~ t !52 arctanS 1

b
tan

v~ t !

2 D ~12!

gives us an angle with the desired property: lim«→0c(t)
5v00t. In terms of the natural anglec(t), Eq. ~11! becomes

ċ5v001S «

v00
D sin~vt1Q!@a2b cosc#, ~13!

where, in terms ofa andb,v005Aa22b2.
As the driving amplitude« is increased from zero, the

SQUID’s running frequency will be pulled toward and eve
tually ~for large enough«) locked to the driving frequency
We now determine the SQUID’s shifted running frequen
for a weak~i.e., below the locking threshold! driving signal.
The phase difference between the SQUID and external o
lator will be defined asw[c2(vt1Q). Therefore, from
Eq. ~13! we have

ẇ5v002v1S «

v00
D sin~vt1Q!@a2b cos~w1vt1Q!#.

~14!

With a little trigonometry, this may be written as

ẇ5v002v1S «b

2v00
D sinw1S «a

v00
D

3sin~vt1Q!2S «b

2v00
D sin~w12vt12Q!. ~15!

Close to the locking threshold,w evolves on a much slowe
time scale than that set byv and v00. Therefore, we can
time-average the right hand side of Eq.~15!, takingw to be
effectively constant. Averaging Eq.~15! over one period of
the driving signal leads to

ẇ5v002v1S «b

2v00
D sinw. ~16!

The solution of Eq.~16! is oscillatory, providedw(t) is in-
terpreted modulo 2p. This frequency can be determine
through separation of variables in Eq.~16!, yielding
4-4
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v15v00AD22S «b

2v00
2 D 2

, ~17!

whereD[(v2v00)/v00 is the normalized detuning. Recal
ing that w(t) is the phase difference between the SQU
oscillation phase and the external driving phase, the osc
tion frequency of@w(t) mod 2p#, v1, equals the difference
between the SQUID’s shifted oscillation frequencyvS and
the external driving frequencyv. Taking proper account o
signs for the two cases of positive and negative detuning,
SQUID’s shifted frequency is given by

vS5v2sgn~D!v1 . ~18!

The two fundamental frequenciesv andvS will give rise
to combination tones in the power spectrum of our nonlin
system’s response at the frequencies

n1v6n2vS , ~19!

wheren1 , n2 are integers. Figure 4 is a density plot sho
ing the power spectra, computed via numerical simulation
the full ~but noise-free! SQUID equations~2!, for different
driving amplitudes«; lighter shades indicate greater powe
The ‘‘normalized amplitude’’qN[q/Ac5«/@Ac cos(u)# re-
fers to the driving signal’s amplitude, normalized by the a
plitude Ac required to just reach the bifurcation point. Th
dotted lines superimposed on the density plot show the th
retically predicted locations of some of the lower order co
bination tones~19!, revealing an elegant pattern. Notice ho
well the dotted lines track the locations of the actual peak
the spectra.

B. Synchronization boundaries

Now we consider the case where the SQUID oscilla
synchronizes with the external drive. Fixed-point solutio
of Eq. ~16! correspond to frequency locking between t
SQUID and the external drive. Hence, we have

v2v005S «b

2v00
D sinw. ~20!

Sinceusinwu<1, the frequency-locking boundaries are giv
by

v2v0056S «mina

v00
D , ~21!

where «min represents the minimum value of amplitude«
required for frequency locking. Solving for«min reveals that
it is proportional to the absolute value of the normaliz
detuningD:

«min5
v00

2

a
uDu. ~22!

Using «min5qmin cosu5qN,minAc cosu and v00
2 54Aca cosu

1(Ac cosu)2'4Aca cosu, we have
06611
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qN,min5
4Aca cosu

Aca cosu
uDu54uDu. ~23!

This simple result tells us that, in order to lock the SQUID
the external drive, the ac bias current amplitude~normalized
by Ac) must be at least 4 times the detuning. The accurac
this prediction is very good, as can be judged from Fig.
where the theoretically predicted minimum locking amp
tude ~23! ~bold line! and the same value as measured
numerical simulation of the full~but noise-free! SQUID
equations~2! ~dots! are compared.

FIG. 4. Power spectra of SQUID response as a function of d
ing amplitude. Bin width is 6.0147631025 rad/sec. The driving
amplitudes are below the level needed to induce frequency lock
rather, the SQUID oscillation frequency is ‘‘pulled’’ toward th
driving frequency. The shaded ‘‘density plot’’ uses lighter shades
indicate higher power and was computed via numerical simulat
The dotted lines show the theoretical prediction~19! of the loca-
tions of fundamental and combination tone peaks in the power s
tra. The SQUID’s oscillation frequency in the absence of drivi
wasv0050.06159, corresponding to frequency bin 1024. The dr
ing signal’s frequencyv50.06929 corresponds to bin 10241128
51152. b51.33, Fex50.2, J5Jc1Ac1q sinvt, Jc50.831258,
andAc50.002.
4-5



e

b

o
n

c

E

n

n
er

the

uron
orb-

ed

e

f

nd,
the
. 1.
ing

i-

t
int
n
e
the

ws
l to
-
sal
ent
av-

wer
to

vi-

,
tic

e

ic

M. E. INCHIOSA et al. PHYSICAL REVIEW E 63 066114
IV. LANGEVIN NOISE AND ITS EFFECT ON DYNAMICS
NEAR THE CRITICAL POINT

We now consider augmenting the NF@Eq. ~4! or ~8!# with
an additive noise termF(t). For the time being, we assum
that there is no external deterministic~time-sinusoidal! driv-
ing signal. The noise is taken to have zero mean and
Gaussian and delta correlated:^F(t)&50, ^F(t)F(t8)&
5s2d(t2t8). Very close to the critical point~corresponding
to the onset of the saddle node bifurcation!, we can assume
that the dominant contribution to the oscillation periodT0 ~6!
arises from the low-slope, approximately linear portion
the potential~7!. Therefore, to model this part of the motio
we can try approximating the nonlinear potential~7! with a
linear potential@as in the ‘‘perfect integrate-fire’’~PIF! neu-
ron model@22,23##

U1~v !52APIFv, ~24!

whereAPIF is a bit larger thanANF to improve the fit of the
linear potential to the true cubic potential; later in this se
tion we will show that APIF51.5ANF provides excellent
agreement between theoretical predictions derived using
~24! and simulations of the full SQUID equations~see Figs.
5, 6!.

Under the linear potential~24!, the ‘‘velocity’’ variable
satisfies

v~ t !5v01APIFt, ~25!

with v0 being preselectedso that the passage time to a
absorbing barrier located ata0 is exactlyT0. This description
is underpinned by the fact that the oscillations are sponta
ous; in the presence of noise the mean period will be v

FIG. 5. First passage density functions obtained from the th
retical prediction ~29! ~solid line! and from simulations of the
full SQUID equations~black dots! and the normal form equation
~gray dots!. b51.33, Fex50.2, J5Jc1Ac , Jc50.831258, Ac

50.000258,ANF50.000246232,a50.5105,s257.8869731028.

FIG. 6. Power spectral densities obtained from the theoret
prediction ~30! ~thin solid line! and from simulations of the full
SQUID equations~gray points!. Same parameters as Fig. 5.
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close to the deterministic meanT0, and it will have some
distribution with a variance and mode that depend on
noise intensitys2. We readily obtain

v052
APIFT0

2
, a05

APIFT0

2
, ~26!

and the model has now been mapped onto the PIF ne
model. We assume that after every excursion to the abs
ing barrier the state point is reset to the initial valuev0,
corresponding to a reinjection. Effectively, we have replac
the dynamics~4! by the PIF model

v̇5APIF1F~ t !. ~27!

The mean ‘‘firing period’’ isT0 ~6!, which incorporates the
NF parametera.

The approximation~27! should be very good near th
critical point. If one draws a vertical line throughv0 to in-
tersect the potentialsU(v), U1(v), then the separation o
the potentials should be extremely small, i.e.,uU(v0)
2U1(v0)u!1. This leads to the requirementuav0

3/3u!1,
and, substituting forv0, we have the condition

APIF
3

a
!1, ~28!

which is well satisfied near the onset of the bifurcation a
in fact wherever one obtains good agreement between
exact and calculated oscillation periods as depicted in Fig
Hence, the PIF description can be invoked in the runn
regime where our calculations of Sec. II are valid.

For the system~27! with the absorbing boundary cond
tion, the first passage density function is given by@22,23#

g0~ t !5
DU0

A2ps2t3
exp2(DU02APIFt)2/2s2t, ~29!

where we introduce a ‘‘barrier height’’DU0[ua02v0u
5APIFT0. It is very instructive that only this barrier heigh
enters into all expressions; a knowledge of the initial po
v0 and the barrier locationa0 is not necessary. Equatio
~29!, with APIF51.5ANF, gives a very good prediction of th
first passage density function measured in simulations of
full SQUID equations and the normal form. Figure 5 sho
excellent agreement for return times greater than or equa
the most probable time~the time at the mode of the distribu
tion!. These relatively long times emphasize the univer
behavior that the models have in common. The disagreem
at shorter times reflects the differences in the detailed beh
ior in the models close to a ‘‘spike.’’

The good agreement seen in Fig. 5 occurs also for lo
noise levels. For higher noise levels, the noise begins
dominate the other terms in the differential equation~s!,
qualitatively changing the dynamics and rendering the pre
ous analysis invalid.

Note that the modetm of the density function~29! is a
function of noise@23#, in contrast to the mean value which
to a high degree of accuracy, is simply the determinis

o-

al
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crossing timeT0 ~provided the noise is not too large!. We
reiterate that all our calculations are carried out in the os
latory regime (J.Jc for fixed Fe). On the other side of the
critical point (J,Jc), we encounter ‘‘excitable’’ dynamics
that can, close to the critical point, be represented by a
ticle in a near-parabolic potential. This approach, which
closely analogous to a ‘‘leaky integrate-fire’’ neuron mod
~or, simply, a noise-driven Ornstein-Uhlenbeck process w
an absorbing barrier! @24#, has recently been quantified@25#.

From the first passage density function,g0(t), one may
compute the output power spectral density~PSD!, treating
the ‘‘firing’’ process as being renewal~true to a high degree
of approximation in the absence of periodic forcing! and us-
ing the Lukes formula@23,26# ~disregarding any dc term!:

S0~V!5
uF0~V!u2

T0
ReF11f0~V!

12f0~V!G , ~30!

where f0(V)[*0
`g0(t)eiVtdt5exp@DU0(APIF

2AAPIF
2 22is2V)/s2# is the characteristic function ofg0(t)

and F0(V) is the Fourier transform of a single pulse
‘‘spike.’’ Although this approach is strictly true for a proces
consisting of identical pulses separated by random quies
intervals, in the case of low noise the pulses in our sys
are relatively alike and the interpulse interval is nearly q
escent. Also, we do not have an analytical expression for
pulse shape or its Fourier transform. However, our very n
row pulses in the time domain correspond to very bro
peaks in the frequency domain centered around zero
quency. Therefore, we can takeF0(V) to be approximately
constant for 0!V!1/(pulse width). It should be clear tha
moving away from the bifurcation and deep into the runn
regime would result in less spiky, more rounded wavefor
and therefore worsen the quality of this approximation.

Figure 6 shows good agreement between the theore
prediction ~30! of the PSD and simulations of the fu
SQUID equations when a constant value is chosen
F0(V) such that we get a good fit to the height of the low
frequency peaks. Simulations of the normal form equat
yield similarly good agreement~not shown!. Note that taking
F0(V) to be constant does cause the theoretical predictio
exceed the simulation result at high frequencies. In fa
when we numerically evaluateF0(V) using a typical pulse
generated in the simulations and then use thisF0(V) in Eq.
~30!, we do see better agreement~the correction is a factor o
about 0.7 atV50.25).

It is worth pointing out that the PSD given above conta
some very interesting features due to the presence of
intrinsic oscillation frequency in the dynamics. These fe
tures have been discussed in Ref.@23#, and we do not repro-
duce them here.

We now insert a time-sinusoidal signal. Then the noi
augmented NF reads

v̇5Ac cosu1av21« sinvt1F~ t !, ~31!

where we will take«!Ac cosu, andv as the smallest fre
quency in the system. Note, however that this ‘‘adiabat
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condition can be somewhat relaxed in practice~as in conven-
tional stochastic resonance calculations@8#, for example!.

We must now set the initial conditionv0s and the absorb-
ing barriera0s for the problem with the signal present. A
before, we assume the important motion to occur through
bottleneck, ignoring the steep part of the potential. Then
relevant part of the ODE~31! can be integrated to give

v~ t !5C1APIFt2
«

v
cosvt, ~32!

C being an integration constant. Settingv5v0s at time t
50 determinesC. Then we setv5a0s at time t5Ts , the
period of the oscillations with signal present. Again, we c
find for the ‘‘barrier height’’

a0s2v0s[DUs5APIFTs1
«

v
~12cosvTs!. ~33!

Note thatDUs(«50)5DU0, as it should.
We are now faced with the PIF model with a drivin

signal. As described in Ref.@23#, we can derive the escap
densityg(t):

g~ t !5
DUs

A2ps2t3
exp@2Z2

2 ~ t !#

1H~ t !«~ t sinvt1v21 cosvt !Fc~Z1~ t !!

3expF2tH~ t !S APIFt2
«

v
cosvt D G , ~34!

where we define

Z6~ t ![
DUs6@APIFt2~«/v!cosvt#

A2s2t
, H~ t ![

DUs

s2t2
,

andFc is the complementary error function.
Equation~34! has been derived under some very string

assumptions@23,24#. These include having a signal ampl
tude that is small compared to the drift~constant! term in Eq.
~31!, and the adiabatic assumption of low signal frequen
Accordingly, the applicability of Eq.~34! is severely re-
stricted in many practical scenarios; however, one can re
the above constraints somewhat and still get the cor
qualitative behavior@23,24#.

To compute the PSD we might again consider using
Lukes formula~30! applied to the ‘‘spike’’ sequence, with
T0 replaced byTs andg(t) in place ofg0(t). However, since
the signal phase is not reset each time we cross the abso
barrier and have reinjection, this can lead to some seri
issues that revolve around the assumption of renewal be
ior in using the Lukes formula. Not employing a phase re
following every ‘‘spike’’ means that successive spikes cou
be correlated, so that the Lukes formula is not strictly app
cable. Resetting the phase of the signal following ev
‘‘spike’’ ensures the process being renewal; however, thi
an unreasonable approximation, except in very spec
4-7
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cases. In any case, one would expect Eq.~30! to yield poorer
agreement with increasing signal amplitudee for the reasons
stated earlier.

Note that in the absence of a phase reset following ev
‘‘spike,’’ we should introduce a random phase componenf
and then averageg(t) with respect tof ’s density function
W(f):

ḡ~ t !5E
0

2p

g~ t,f!W~f!df. ~35!

One can carry out the averaging in a variety of ways. O
procedure is to use a variant of the distribution already
rived by Zhouet al. @27#:

W~f!5
1

2pI 0~«DUs /s2!
expF«DUs

s2
cosfG . ~36!

For the weak signal case«̃[«/APIF!1 ~for which this treat-
ment is strictly valid!, we can systematically expand Eq.~34!

to O( «̃). When we insert the phase factorsf into the argu-
ments of all the trigonometric functions, multiply by the di
tribution ~36! and expand toO( «̃), we do not get any con
tribution ~to this order only! from W(f). Other authors@28#
have suggested improvements on the phase-averaging p
dure.

Given the vicissitudes and caveats associated with the
troduction of time-inhomogenous terms into the lea
integrate-fire model and the fact that we will ultimately
concerned with more than one external signal, we do
further utilize the integrate-fire analogy for the case wh
driving signal~s! are present.

V. NUMERICAL SIMULATIONS WITH DETERMINISTIC
AND STOCHASTIC FORCING

A. Low frequency noise suppression

Applying sinusoidal driving at or near the running fr
quency can produce an injection locking effect that tends
suppress the noise background in the neighborhood of
running frequency as well as near dc. Figure 7 illustrates

FIG. 7. Power spectrum of SQUID circulating current. Drivin
signal amplitude isq50 ~gray curve! andq50.0014~black curve!.
b52, Fex50.495, J5Jc1Ac1q sinvt, Jc50.40731,Ac50.002,
and v50.0479225. There are two Gaussian noise sources
strengths256.309631025 modeling thermal noise coming from
the two Josephson junctions in the dc SQUID. Bin width
4.6799331025 rad/sec.
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effect using a driving signal of amplitudeq50.0014 and
frequency equal to the running frequency. At higher drivi
amplitudes, noise lowering occurs across the spectrum f
dc to several times the running frequency. Similar effe
appear to have been observed first in charge density w
experiments@12# and later were explained theoretically by
generic iterative map underlying the locking of the intern
oscillation frequency to an external time-periodic signal@13#.

Figure 8 shows the low frequency~about 3% of the run-
ning frequency! noise power as a function of input amplitud
and detuning. Recall from Sec. III B that the bold line a
dots mark the minimum amplitude required for locking in t
absence of noise, as theoretically predicted Eq.~23! and as
measured via numerical simulation, respectively. As a fu
tion of input amplitude, the low frequency noise powerrises
until the input amplitude reaches roughly the amplitude n
essary to cause frequency locking. Increasing the input
plitude above this value then begins to cause a decreas
low frequency noise power. Eventually the noise power
suppressed significantly~up to approximately 10 dB! below
its value in the absence of an injection locking driving sign

B. Heterodyning

We have seen that injection locking can significantly su
press low frequency noise. What is its effect on low fr
quency sinusoidal signals? In the left panel of Fig. 9

of

FIG. 8. Low frequency~3.125% of the running frequency! noise
power as a function of input amplitude and detuning. An injecti
signal amplitude ofq5Ac50.002 just reaches the bifurcation poin
‘‘normalized input amplitude’’ qN is measured relative to this
value. The detuningD equals the injection signal frequencyv mi-
nus the running state frequency of 0.0479225 rad/sec, meas
relative to the running frequency. The bold line marks the theor
cally predicted minimum amplitude required for locking in the a
sence of noise, while the dots mark the same quantity as meas
via numerical simulation~again, in the absence of noise!. Other
parameter values as in Fig. 7
4-8
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FIG. 9. Power spectrum of SQUID circulating current, derived from full SQUID equations~left panel! and normal form~right panel!.
Injection locking amplitude isq50 ~white curve with gray border! and q50.002 ~black curve!. The target signal amplitude isAT

50.00025. Target signal frequencyvT5.03125v, andv is set equal to the running frequency.b52, Fex50.495, J5Jc1Ac1q sinvt
1AT sinvTt, Jc50.40731, andAc50.002. For the full SQUID equations there are two Gaussian noise sources of strengths256.3096
31026 each ~one noise source for each of the two coupled equations in two variables!, the power spectrum bin width is 4.6799
31025 rad/sec, andv50.0479225~i.e., bin 1024!. For the augmented normal form case there is just one Gaussian noise source of s
s256.309631026, the power spectrum bin width is 6.206731025 rad/sec, andv50.0635566~i.e., bin 1024!.
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illustrate the power spectrum of a SQUID driven by a lo
frequency sine wave in the absence and presence of a m
higher frequency injection locking signal. Although injectio
locking reduces the low frequency noise, it also suppres
the low frequency signal. However, a strong heterodyn
effect also occurs, resulting in the appearance of sideba
around the injection locking signal. The presence of a l
frequency signal can be inferred from these sidebands, an
practice it may be more convenient to detect the low f
quency signal at the higher frequency of these sideband

In the normal form case~right panel of Fig. 9!, we do not
see any low frequency noise suppression. However, we s
very interesting effect concerning detection of the low f
quency target signal. Adding the injection locking signal a
pears to boost the low frequency signal considerably. F
thermore, the sidebands produced have a much greater s
strength and signal to noise ratio than the low freque
target signal itself. This suggests that it may be much m
reliable to detect such a low frequency target signal via
high frequency sidebands in systems that are very accura
described by the normal form.

Note that Fig. 9 is meant to illustrate thequalitativesimi-
larities and differences between the full SQUID equatio
and the normal form. Recall that the normal form was ‘‘au
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mented’’ with a noise term; however, this term was not r
orously derived from the SQUID equations. For comparis
purposes, we have simply chosen to add the same stre
noise term to the normal form equation as in each of the
SQUID equations. This choice is supported by the fact tha
did give excellent agreement in the case of the first pass
density function~Fig. 5!

Strong heterodyning effects are also seen for a high
quency target signal~at about 97% of the running frequency!
in the presence of an injection locking signal at the runn
frequency~Fig. 10!. This heterodyning effect might prov
useful when the target signal frequency is quite high an
would be more convenient to filter, process, and detect it
lower frequency.

VI. DISCUSSION

We were led to study the dc SQUID due to its wide a
plicability for magnetic sensing applications@10#. Earlier ex-
perimental and theoretical work has established that the
response to weak magnetic signals~in the presence of a
background noise floor! is found just past the critical point
The goal of the present work has been to develop a rea
ably broad understanding of the system dynamics in this
t-
s

al-
FIG. 10. Power spectrum of SQUID circula
ing current, derived from full SQUID equation
~left panel! and normal form~right panel!. Injec-
tion locking amplitude isq50 ~white curve with
gray border! andq50.002~black curve!. The tar-
get signal amplitude isAT50.00025. Target sig-
nal frequencyvT50.96875v, andv is set equal
to the running frequency. Other parameters v
ues as in Fig. 9.
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gime, including the effects of periodic and stochastic pert
bations.

The tool we found useful was normal form analysis. T
normal form was modified in two ways, first by choosing
local form which simultaneously accommodated the glo
phase space topology, and second by adding forcing term
model periodic and random perturbations. While these s
fall outside the rigorous treatment of center manifold ma
ematics, they have been successful in the past. Here a
this approach does an excellent job, judging from comp
sons against numerical simulations of the full system.

In this way, we have made a good deal of quantitat
progress, deriving expressions near the bifurcation for
following: the spontaneous oscillation frequency and
spiky wave form in the absence of periodic or noisy pert
bations, the frequency shift and onset of frequency locking
the presence of a weak periodic forcing, and the first pass
density function and power spectral density in the prese
of noise.
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Under the combined influences of noise and periodic fo
ing, we have only qualitative progress, which is nonethel
suggestive. We find a suppression of low frequency no
due to injection locking. If a second~weak! periodic signal is
present, a strong heterodyne effect occurs, leading to sur
ingly clean high-frequency sidebands of the first~injection!
drive. This leads to an intriguing alternative approach
detecting either very weak low- or very high-frequency s
nals for which dc SQUIDs may be particularly well suite
Curiously, while the augmented normal form does not sh
the noise suppression, it captures the heterodyning eff
quite nicely.
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